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Tutorial Overview

1. Introduction (Kewei)
2. Generative Approaches (Kewei, Yong)
3. Discriminative Approaches (Wenjuan)
4. Special Topics (Yanpeng)
5. Summary (Kewei)
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Part 4: Special Topics
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Outline

● Lexicalized Grammars
○ Head-driven grammar learning

● Multimodal Grammar Induction
○ Regularities in multimodal data

● Structurally Constrained Language Model
○ Structural dependencies for the next word prediction

● Syntax Probes
○ Parameter-free grammar induction

● Multilingual Grammar Induction
○ Similarities between languages
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Lexicalized Grammars

Ambiguity prevails in sentences.

    : book a flight which serves dinner.

    : book a flight for “the dinner”.
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Lexicalized Grammars

PCFGs for disambiguation.

PCFGs assign each tree a probability.

Under PCFGs                         as the left parse is 
more sensible.
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Lexicalized Grammars

PCFGs are inadequate to resolve ambiguity of sentences.

The prepositional phrase (PP) can be attached to either 
the verb phrase (VP) or the nominal phrase (NP).

The resulting trees have very similar probabilities.
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Lexicalized Grammars

PCFGs are inadequate to resolve ambiguity of sentences.

PP can be attached to either VP or NP.

The resulting trees have very similar probabilities.

“into” is more likely to bind to “dump” than “sack”.
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Lexicalized Grammars

Lexicalized PCFGs for disambiguation.
Each nonterminal is annotated by the headword 
(and part-of-speech tag) of the phrase which the 
nonterminal dominates [Collins et al., 2003].
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Lexicalized Grammars

Lexicalized PCFGs for disambiguation.
“into” is more likely to bind to “dump” than “sack”.

Lexical PCFGs encode the desired bi-lexical 
dependencies.
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Lexicalized Grammars

Lexical rules in lexicalized PCFGs.
Lexical rules generate a word from an annotated 
nonterminal and always have the probability of 1.
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Lexicalized Grammars

Practical issues of Lexical PCFGs.
Binary rules are too sparse:                where    is 
the nonterminal number and    is the vocabulary 
size.
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Lexicalized Grammars

Practical issues of Lexical PCFGs.
Binary rules are too sparse:                where    is 
the nonterminal number and    is the vocabulary 
size.

Sophisticated smoothing techniques are needed 
[Collins et al., 2003].
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Rule 

Tackle the data sparsity issue: Neural Lexical PCFGs [Zhu et al. 2020].

Lexicalized Grammars

NN

Rule probabilities are generated by neural networks,

- every rule has a nonzero probability [Kim et al., 2019].
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Rule 

: parent
: left child
: right child
: inherited
: non-inherited
: direction

Lexicalized Grammars

Nonterminals and words are represented by continuous vectors, 

- which facilitates informed smoothing [Zhao et al., 2018].
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Tackle the data sparsity issue: Neural Lexical PCFGs [Zhu et al. 2020].
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Lexicalized Grammars

High time and space complexities:

- space complexity:                where    is # of nonterminals 
and    is the vocabulary size.

- time complexity:               where   is the sentence length 
(by naive application of the inside algorithm).
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Lexicalized Grammars

Reduce the complexities: Neural Lexical PCFGs [Zhu et al. 2020].

Factorized rule probability:

-

- such that the number of rules is reduced;
- and the caching trick can be used to reduce computation.
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Lexicalized Grammars

Joint induction of constituency and dependency grammars [Zhu et al. 2020].

Lexicalized PCFGs encode lexical dependencies [Collins 2003]. 

- dependency grammars can be induced as a byproduct.

into a bin

phrase structure dependency structure
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Visually Grounded Grammar Induction

Can visual groundings help us induce syntactic structure?
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Visually Grounded Grammar Induction

The task: inducing phrase-structure grammars from sentences and their visual 
groundings.
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Multimodal Grammar Induction

Exploiting regularities between the semantic content of the image and the syntactic 
structure.
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Multimodal Grammar Induction

Visually grounded neural syntax learner (VG-NSL) [Shi et al., 2019].

- Visual and textual representation model (capturing the regularities)
-
- Parsing model (inducing tree structures)
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Multimodal Grammar Induction: VG-NSL

Optimize visual and textual representations to capture the regularities.

Optimized via contrastive learning...positive pairs
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Multimodal Grammar Induction: VG-NSL

Optimize visual and textual representations to capture the regularities.

negative pairs Optimized via contrastive learning…

… such that positive pairs score higher 
than negative pairs.

positive pairs
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Multimodal Grammar Induction: VG-NSL

Optimize the parsing model to produce plausible trees.

An easy-first greedy parser [Goldberg et al., 
2010]...
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Multimodal Grammar Induction: VG-NSL

Optimize the parsing model to produce plausible trees.

An easy-first greedy parser [Goldberg et al., 
2010] is optimized via REINFORCE.
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Multimodal Grammar Induction: VG-NSL

Practical issues with VG-NSL.

- REINFORCE suffers from large variance in gradient estimation
-

- No obvious visual signals for certain syntactic phenomena [Shi et al., 2019; 
Kojima et al., 2020]
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Multimodal Grammar Induction: VG-NSL

Practical issues with VG-NSL.

- REINFORCE suffers from large variance in gradient estimation
-

- No obvious visual signals for certain syntactic phenomena [Shi et al., 2019; 
Kojima et al., 2020]

- Relying on language-specific priors to alleviate the issues, 
e.g., the head-initial preference in English [Baker, 2008] 30



Multimodal Grammar Induction

Visually grounded compound PCFGs (VC-PCFG) [Zhao et al., 2020].
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Multimodal Grammar Induction

Visually grounded compound PCFGs (VC-PCFG) [Zhao et al., 2020].
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Structurally Constrained Language Models
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Parsing with Syntactic Distance

Syntactic distance measures “surprisal” between adjacent words [Shen et al., 2017]. 
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Parsing with Syntactic Distance

A larger syntactic distance indicates that there is more likely to be a constituent 
boundary between two adjacent words.
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Top-down decoding via recursive binary splitting  [Dyer et al., 2019].

Parsing with Syntactic Distance

splitting point

left subtree

right subtree
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Structurally Constrained Language Models (ON-LSTM)

Ordered neurons LSTM (ON-LSTM) [Shen et al., 2018].

- Integrate tree structures into recurrent neural networks (e.g., LSTMs).
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Structurally Constrained Language Models (ON-LSTM)

Ordered neurons LSTM (ON-LSTM) [Shen et al., 2018].

- Neurons are ordered from bottom to up indicating different updating rates.
- Control information flow via ordered forget and input gate neurons.

39



Structurally Constrained Language Models (ON-LSTM)

Control information flow via forget gate neurons.

- Neurons are ordered from bottom to up indicating different updating rates.
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Structurally Constrained Language Models (ON-LSTM)

Control information flow via forget gate neurons.

- Neurons are ordered from bottom to up indicating different updating rates.
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Structurally Constrained Language Models (ON-LSTM)

Control information flow via input gate neurons.

- Neurons are ordered from bottom to up indicating different updating rates.
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Structurally Constrained Language Models (ON-LSTM)

Control information flow via forget (F) and input (I) gate neurons.

- The multiplication of F and I gate neurons encodes incomplete constituents.
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ON-LSTM is trained as a language model.

Structurally Constrained Language Models (ON-LSTM)
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Estimate Syntactic Distances (ON-LSTM)

Forget gate neurons are used to compute syntactic distances.

- The expected position which splits neurons into two halves.
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Outline
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○ Parameter-free grammar induction

● Multilingual Grammar Induction
○ Similarities between languages
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Syntax Probes

Pretrained models learn syntax [Shi et al., 2016, Tenney et al., 2019, Hewitt et al., 
2019].

Images credit to http://jalammar.github.io/illustrated-bert/ 

Part-of-speech 
tags / 

dependency 
labels / 

constituency 
trees
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Syntax Probes

How to extract syntax from pretrained models [Shi et al., 2016, Tenney et al., 2019]?

Images credit to http://jalammar.github.io/illustrated-bert/ 

Machine translation systems / 
pretrained language models.

Supervised classifier

   

Part-of-speech 
tags / 

dependency 
labels / 

constituency 
trees
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Syntax Probes

The classifier maximizes the mutual information between   and   .

- but does       encode syntax or       learn syntax when       has a high accuracy?

Images credit to http://jalammar.github.io/illustrated-bert/ 

Machine translation systems / 
pretrained language models.

Supervised classifier

x   

Part-of-speech 
tags / 

dependency 
labels / 

constituency 
trees
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Syntax Probes

It is hard to explain whether       encodes syntax or       learns syntax.

- Parameter-free probes remove the learnable classifier. 

Images credit to http://jalammar.github.io/illustrated-bert/ 

Machine translation systems / 
pretrained language models.

Supervised classifier

   

Part-of-speech 
tags / 

dependency 
labels / 

constituency 
trees

Parameter-free 
probes

50



Parameter-free probes infer syntax from pretrained models without learning. 

Syntax Probes: parameter-free probes

Images credit to http://jalammar.github.io/illustrated-bert/ 

Machine translation systems / 
pretrained language models.

Supervised classifier

   Constituency grammar Parameter-free 
probes
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Parameter-free probes infer syntax from pretrained models without learning. 

Syntax Probes: parameter-free probes

Images credit to http://jalammar.github.io/illustrated-bert/ 

Machine translation systems / 
pretrained language models.

Supervised classifier

   Constituency grammarParameter-free 
probes
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Syntax Probes: top-down inference

Top-down inference based on the “surprisal” (syntactic distance) between adjacent 
words [kim et al., 2020].

Define syntactic distance 

-          measures cosine, L1, or L2 distances when       produces vector 
representations of words,

-
-          measures Jensen-Shannon, or Hellinger distances when       outputs 

attention distributions.
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Syntax Probes: top-down inference

Top-down inference based on the “surprisal” (syntactic distance) between adjacent 
words [Wu et al., 2020].

- Compute an impact matrix where                encodes the impact of      on     .
-

-        measures prediction / representation difference at the        position between 
masking out      and masking out      &      .

-

54



Syntax Probes: top-down inference

Top-down inference based on the “surprisal” (syntactic distance) between adjacent 
words [Wu et al., 2020].

- Compute an impact matrix where                encodes the impact of      on     .
-

-        measures prediction / representation difference at the        position between 
masking out      and masking out      &      .

-

- Estimate syntactic distances using the impact matrix.
-

- The average impact between words is large in the same constituent and 
is small in different constituents.
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Syntax Probes: bottom-up inference

Bottom-up (CYK) decoding for constituency grammar induction [Li et al., 2020].

- Multi-head attentions encode interdependencies between words.
-

- Compute similarity for every pair of words [Kim et al., 2020]
-

-                                          where        is word representation;        is distance function
-
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Syntax Probes: bottom-up inference

Bottom-up (CYK) decoding for constituency grammar induction [Li et al., 2020].

- Multi-head attentions encode interdependencies between words.
-

- Compute similarity for every pair of words [Kim et al., 2020]
-

-                                          where        is word representation;        is distance function
-

- Score every span using the similarities (similarly to Wu et al., 2020)
-

- The average similarity between words is large in the same constituent and 
is small in different constituents.

-

- Parsing with the CYK algorithm [Kim et al., 2019, Cao et al., 2020]
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Multilingual grammar induction

Exploit language similarities to induce grammars of different languages.

- cross-lingual word / POS representations
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Multilingual grammar induction

Exploit language similarities to induce grammars of different languages.

- Independent models for different languages [Iwata et al., 2010; Jiang et al., 
2019]

-

- Unified model for different languages [Han et al., 2019]
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Multilingual grammar induction

Independent models for different languages [Iwata et al., 2010].

- Use regularization terms to encourage independent models to behave 
similarly [Jiang et al., 2019]

-

- Use hand-crafted phylogenetic tree to capture 
language similarities [Berg-Kirkpatrick et al., 2010]

phylogenetic tree
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Multilingual grammar induction

Unified models for different languages [Han et al., 2019].

- Capture language similarities by learning language embeddings
-

continuous 
language indicators

shared 
model parameters
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