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Structure learning is hard!
Another solution is to directly perform parameter learning with a
fixed structure (e.g., enumerating all possible rules).
» Most research on parameter learning focuses on DMV, a form
of generative dependency grammars.

> These parameter learning methods are generally applicable for
PCFGs.

» Before introducing the DMV model, let us review a
preliminary model: HMM.
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Unsupervised POS Tagging with HMM

» Goal: find syntax clusters for each word in a sentence.

» a.k.a. POS induction: give each word x; a label z; for
sentence X.

General approach for POS induction: Hidden Markov models
(HMMs)

» Start probabilities: P(z1|zo = START)
» Transition probabilities: P(z|zj—1)
» Emission probabilities: P(x;|z;)

Example: To generate a sentence I sSwAM with POS sequence
PRONOUN VERB.

P(x,z) = P(z1 = Pronoun|zg = START)
- P(zp = Verb|zy = Pronoun) - P(x; = I|z3 = Pronoun)
- P(xp = swam|zy = Verb)



Old Dependency Models
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[Paskin (2002) and Carroll & Charniak (1992)]



DMV with an example
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DMV Model Representation (Klein & Manning, ACL 2004)

Formal Definition (Dependency Model with Valence):
> Sentence x, parse tree z, model joint probability P(x,z; ©)
» three kinds of grammars rules: root, attach and decision.

» dir(h, c): dependency direction from parent token h to child
token c.

» val(h) indicates valency: whether h has already generated a
child.
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Formal Definition (Dependency Model with Valence):
> Sentence x, parse tree z, model joint probability P(x,z; ©)
» three kinds of grammars rules: root, attach and decision.

» dir(h, c): dependency direction from parent token h to child
token c.

» val(h) indicates valency: whether h has already generated a
child.

Rule Schema:
» Root: proot(€)
» Attach: partach(clh, dir)

» Decision:
pdecision(CONT’hv dir7 Va/)7 pdecision(STOP’hv dir? Va/)



DMV for Computing Sentence & Parse Probability

P(X, Z, @) = Proot(r(x7 Z))X

H (pattach(c‘ha dir)pdecision(STOP|ha dir, Val)
(h,c)ez

x I  Pdecision(CONT |, dir, val))
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Extensions of DMV

» Headden Il et al. (2009) introduced the valence into the
condition of attach sampling.

Pattach(c|ha dir) = pattach(c|h> dir, Val)

» Spitkovsky et al. (2012) conditioned decision and child token
generation on sibling words, sentence completeness, and
punctuation context.

» Yang et al. (2020) proposed a second-order extension of DMV
that incorporates grandparent-child or sibling information (p
here).

pattach(C’ha dir) = pattach(c‘hv p, dir, Val)



Three Different Models of Representing Rule Probabilities

Methods ‘ Representation (Parameters: ©)

Table-based p(c|h, dir)
Feature-based [B-K et al. 2010] p(clh, dir) occ wTf(h, c, dir)
Neural-based [Jiang et al. 2016] | p(c|h, dir) = softmax.(f(h, dir))

Outputs (CHILD or DECISION)
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Differences

Drawbacks of Table-based methods: Symbols are independent with
each other. However, some words behave alike in parsing.
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Differences

Drawbacks of Table-based methods: Symbols are independent with
each other. However, some words behave alike in parsing.

N

v N
ROOT | play football

Y

ROOT | played football

The feature-based and neural-based methods can tackle this
problem:

» Utilizing hand-crafted sparse features (log-linear model).

» Neuralize the grammar.



Learned Correlations of POS tags for Neural-based Models
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Comparisons

Methods ‘ Pros Cons

Table-based Simple parameter learning | Independent symbols.
Feature-based | Modeling symbol similarity | Need mannual-designs
Neural-based | Automatic learned similarity -



Supervised Parameter Estimation

Given a set of annotated sentences X = x!, x2,...,x" and parses
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Supervised Parameter Estimation

Given a set of annotated sentences X = x!, x2,...,x" and parses
Z =17172,...,zN, how to learn parameters © of generative
grammars.
1< 1<
J(O)=-=> log P(x?,2%) =-=>"log > p(r)
N d=1 M N d=1 d zd
=1 joint probability = reR(x,z9)
| ——

rule factorization

where p(r) is normalized.
P> Table-based: parameter estimation based on cooccurrence

counts. The following is an Attach rule example:
count(c, h, —)
clhy—=)= —F——=

plclh, =) count(h,—)

» Feature-based & Neural-based: parameter estimation based
on gradiend-based algorithms.



Unsupervised Learning
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Unsupervised Learning

Given a set of unannotated sentences X = x!,x?,...,x", how to
learn parameters ©.
> Maximum likelihood estimation:
1Y 1<
__* dy _ _ * d _d
J(©) = Ndz:llogP(x )= NdZ;Llog Z:P(x ,29)
- = z
—_——

marginalized likelihood

» Here p(r) can be parameterized by table-based, feature-based
or neural-based methods.

> EM algorithm to optimize the objective function.



Unsupervised Learning: EM algorithms-Part 1

For unsupervised learning, a guess-and-update approach is utilized.

log P(x; ©) = Z q(z) log P(x; ©)

xz@)
=2 @) oe o)

P(x,z;©) q(2)
= 2_dl2)log q(z) P(zlx; ©)
= Z Iog ( )@) + KL(q(z)||P(z|x; ©))
> Z )log P(x,z; ©)

q(2)



Unsupervised Learning: EM algorithms-Part 2

We can obtain a new objective function:
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Unsupervised Learning: EM algorithms-Part 2
We can obtain a new objective function:
N

Xd Zd.
7(0.0@) =~ (Y gty o " 21O

= Zd q(z9)
+ZKL NP9 x?; ©))
> E-step, fix ©, optimize g(z9):
arg m(lr;J (©,Q(z)) = arg m|n Z KL(q(z9)||P(z9|x?; ©))

= q(2%) = P(z d\x 9)
> M-step, fix g(z9), optimize ©:

Xd Zd.
J(0.0) = - Y (3 ateiog ")



Unsupervised Learning: EM algorithms-Part 3

For table-based probabilistic grammars:
» E-step: utilize dynamic programming (the inside-outside
algorithm) to compute a vector of expected frequencies.

e(r,x) = Eq(z)c(ra X, Z)

> M-step: update © using expected frequencies.

p(r) o Z e(r,x)

X



Unsupervised Learning: Online EM algorithms

Cons of EM algorithm:

» EM algorithm is a batch-style algorithm, suffers from slow
convergence.

» If we have large-scale unlabeled data, performing EM
algorithm is very time-consuming.

Online EM algorithm provides significant speed-up.



Unsupervised Learning: Online EM algorithms

Cons of EM algorithm:

» EM algorithm is a batch-style algorithm, suffers from slow
convergence.

» If we have large-scale unlabeled data, performing EM
algorithm is very time-consuming.

Online EM algorithm provides significant speed-up.
Key ideas

» Updating parameters (in M-step) after running E-step on a
mini-batch of samples rather than the entire corpus.

» During E-step, interpolating the g distribution with
distributions from previous steps.

[Liang et al. 2009]



Unsupervised Learning: Modified EM algorithms

EM algorithm — Modified EM algorithm (for feature/neural-based
methods).

Q Dynamic Programming
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[B-K et al. 2010, Jiang et al. 2016]



Unsupervised Learning: Direct Gradient Descent

Another approach is directly computing the gradient:
Ve log P(x) = Z P(z|x;©)Ve log P(x,z; ©)

= Z P(z|x; ©) Z c(r,x,z)Veg log p(r)

reR(x9,z9)
= > e(rx)Velogp(r)
reR(x4,z9)
A trick from [Eisner. 2016]: we can use back-propagation to
calculate the expected frequencies e(r, x).

_ Olog P(x; ©)
elr,x) = dlog p(r; ©)

No need for the outside algorithm.



Problems

> MLE objective only aims to explain the training data, which
lacks of inductive bias.

> Local optima problem.
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Improvements for MLE: Maximum A Posteriori

N
J(©) = —log P(OX) x — > "log Y P(x?,271©) —log P(6)

d=1 2 prior

marginalized likelihood

» Probabilistic grammars are built out of multinomial
distributions, so the Dirichlet distributions are natural
candidates as priors which encourage smoothness or sparsity
[Kurihara and Sato, 2004; Johnson et al. 2007; Tu et al.
2016].

» Cohen and Smith (2008; 2009) leverage logistic-normal prior
distributions to encourage symbol correlation.

» EM is sometimes not useable in MAP inference, so variational
inference and MCMC are often used.
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Improvements for MLE: Viterbi Likelihood

N
1
J(©) = N log Z ngxP(xd, z%)
d=1

1 N
=N IogdZ1 max H P(r)

reR(x9,z9)

» Optimized with the hard EM algorithm.

» Stronger performance in unsupervised parsing.

P Seen as a special case of entropy regularized model learning.
[Spitkovsky et al. 2010, Tu et al. 2012]



Improvements for MLE: Contrastive Estimation

Contrastive Estimation [Smith and Eisner, 2005a,b]
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Improvements for MLE: Contrastive Estimation

Contrastive Estimation [Smith and Eisner, 2005a,b]

N

J(©) = 1 log 2z 5(4,7)

N d—1 ZX’EN(X’) sz S(le Z)

where s(x, z) is the score of x and z.

» The intuition is to assign higher weight to appeared samples
and decrease the weight for neighborhood samples.

» Choice of neighborhood: linguistic knowledge.

> Examples: deleting words from x, transposing two words.



Improvements for MLE: Posterior Regularization

Basic idea:

P Uses constraints on posterior distribution to guide parameter
learning.
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Improvements for MLE: Posterior Regularization

Basic idea:

P Uses constraints on posterior distribution to guide parameter
learning.

» Knowledge of unIiker parses simplify learning.
J(©,Q(z Z KL(q(2")|IP(z7[x":©)) + > _ f(a(z"))

> The new term is only dependent on gq.

» Only the E step is affected and modified. M step remains the
same.

[Ganchev et al. 2010]



Different Forms of Posterior Constraints

» Entropy constraints [Tu and Honavar, 2012]

f(q(z)) = =) _ a(z)log q(2)

z

» Linguistic constraints [Naseem et al., 2010]
f(q(z)) = Eqz)9(x,2)
» Sparsity constraints [Gillenwater et al., 2010]
f(a(2)) = l|Eq() (% 2)l 5

» Bounding recursion depth [Noji et al. 2016].

o(x,z) is a decomposed function, which enables effective learning!



Posterior Regularization #1: Entropy Constraints
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Figure 1: up-left/up-right/down: distribution from random grammar/EM
learned model/supervisedly learned grammar, [Tu et al. 2012]



Posterior Regularization #2: Linguistic Constraints
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Posterior Regularization #2: Linguistic Constraints

A

z: ROOT |

play  football  too
N
Z: ROOT | play football too

A set of predefined linguistic rules [Naseem et al. 2010], like:

VERB — VERB | NOUN — NOUN
VERB — NOUN | NOUN — ADJ
VERB — PRON | NOUN — DET
VERB — ADV | NOUN — NUM
VERB — ADP | NOUN — CONJ
ADJ — ADV ADP — NOUN

In this example, ¢(x,z) =2, ¢(x,2) =1




Improvements for Avoiding Local Minimum

>

Deterministic annealing [Smith and Eisner, 2004]: start with a
concave objective and gradually move to the actual
non-concave objective.

Structural annealing [Smith and Eisner, 2006]: gradually
decrease structural biases.

Curriculum learning [Spitkovsky et al. 2010; Tu et al. 2011]:
start learning from short sentences; gradually increase training
sentence length limit.

Switching between different objectives [Spitkovsky et al.
2013].

Treating different learning algorithms and configurations as
modules and connecting them to form a network [Spitkovsky
et al., 2013].

Gibbs sampling [Johnson et al., 2007]: may incorporate
constraints and biases, e.g., depth-bound [Jin et al., 2018a,b],
subtree reducibility [Maretek and Zabokrtsky, 2012; Maretek
and Straka, 2013].



Flow-based Models: Improve Syntax with Semantics
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» Jointly learn discrete syntactic structure and continuous word
representations (semantic).

> Latent embedding e, pretrained embeddings x and invertible
function f4(e).

» Training with normalizing flow helps induce better parsers.
[He et al. 2018, Jin et al. 2019]
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Summary on Parameter Learning of Generative Approaches

>

>

Structure learning is hard. Parameter learning is much easier
and draws more attention.

A typical generative model in unsupervised dependency
parsing: DMV

Three different kinds of representations: table-based,
feature-based and neural based methods.

EM algorithm is one of standard approach to learn the
grammar parameter, which MLE objectives.

Recently, directly gradient descent is more popular.

Many improvements for MLE: viterbi likelihood, MAP
estimation, contrastive estimation.

Posterior regularization is a useful approach to encode
knowledge.

Many technologies can improve avoiding local minimum.



