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Tutorial Overview

1. Introduction (Kewei)
2. Generative Approaches (Kewei, Yong)
3. Discriminative Approaches (Wenjuan)
4. Special Topics (Yanpeng)
5. Summary (Kewei)



2. Generative Approaches



● Main approach: learning a probabilistic generative grammar
○ Context-free grammar (CFG)
○ Dependency model with valence (DMV)
○ Other: 

■ Tree substitution grammar (Bod, 2006a,b; Cohn et al., 2010; Blunsom & Cohn, 2010)

■ Combinatory categorial grammar (Bisk & Hockenmaier, 2012, 2013; Bisk et al., 2015)

● Other generative approaches
○ Constituent Context Model (Klein and Manning, 2002; Golland et al., 2012)

○ Language model with structural constraints (Shen et al., 2017; 2018)

A generative approach models the joint generation of sentence x and parse tree z.

The focus of part 2

Generative Approaches

To be discussed in part 4
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● Structure Learning (Kewei)
● Parameter Learning (Yong)
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Structure Learning

● Context-free grammar (CFG)
○ Σ: terminal symbols
○ N: nonterminal symbols
○ S: start symbol
○ R: production rules

Vocabulary of the language; no learning 
required

“Structure” of the grammar; must be 
learned

● Structure learning
○ Finding an optimal set of production rules

● Two classes of approaches
○ Heuristic approaches
○ Optimization-based approaches



Heuristic approaches

● Create nonterminals and production rules using heuristic criteria and rules
● No explicit learning objective

Three typical steps in a heuristic approach:

● Constituent filtering
● Nonterminal creation
● Reduce and repeat



Heuristic approaches - Constituent filtering

Goal: identify substrings in the training sentences that are likely constituents

Methods:

1. Frequency of a substring
2. Mutual information between the symbols occurring before and after a 

substring (Clark, 2001)
○ Constituents often have high MI



Heuristic approaches - Constituent filtering

Goal: identify substrings in the training sentences that are likely constituents

Methods:

3. Ratio of fan-through to fan-in 
(Solan et al., 2005)



Heuristic approaches - Nonterminal creation

Goal: create a new nonterminal representing a set of constituents

Methods:

1. Substitutability heuristic (Adriaans et al., 2000; van Zaanen, 2000; Solan et al., 2005; 
Clark, 2007)
○ “Constituents of the same type can be replaced by each other” (Harris, 1951)
○ Create a nonterminal for substrings that appear in the same context (i.e., these 

substrings are substitutable)



Heuristic approaches - Nonterminal creation

Goal: create a new nonterminal representing a set of constituents

Methods:

1. Substitutability heuristic (Adriaans et al., 2000; van Zaanen, 2000; Solan et al., 2005; 
Clark, 2007)
○ Substitution-graph



Heuristic approaches - Nonterminal creation

Goal: create a new nonterminal representing a set of constituents

Methods:

1. Substitutability heuristic (Adriaans et al., 2000; van Zaanen, 2000; Solan et al., 2005; 
Clark, 2007)



Heuristic approaches - Nonterminal creation

Goal: create a new nonterminal representing a set of constituents

Methods:

2. Biclustering (Adriaans et al., 2000)
○ Simultaneously group substrings 

and their contexts



Heuristic approaches - Nonterminal creation

Goal: create a new nonterminal representing a set of constituents

Methods:

3. Distributional clustering (Harris, 1954; Clark, 2001; Scicluna and de la Higuera,2014)
○ Cluster substrings based on their distributions over possible contexts
○ Based on co-occurrence frequencies, not just yes/no. Hence more robust. 
○ Can be extended to biclustering (Tu&Honavar, 2008)



Heuristic approaches - Nonterminal creation

Goal: create a new nonterminal representing a set of constituents

Methods:

3. Distributional clustering (Harris, 1954; Clark, 2001; Scicluna and de la Higuera,2014)

Different contextual 
distributions

Distributional biclustering can be 
more robust (Tu&Honavar, 2008)
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Heuristic approaches - Reduce & repeat

Once a nonterminal is created, along with a set of production rules, reduce the 
training sentences using the rules and then repeat the previous steps.

John makes tea .
John likes tea .
John makes coffee .
John likes coffee .

John V tea .
John V tea .
John V coffee .
John V coffee .

V → makes | likes 



Optimization-based approaches

Optimizing an explicit objective function of the grammar structure by local search:

● Start with a trivial grammar
● Search with a set of structure-change operations



Optimization-based approaches

Objective functions

● Posterior probability (Stolcke and Omohundro, 1994; Chen, 1995; Tu&Honavar, 2008)

Likelihood, computed by parsing 
corpus X using grammar G.

Rule probabilities in G are either 
heuristically assigned or learned.

Prior probability. A typical choice is the 
universal a priori probability

L(G) is the description length of G in bits

Trade-off between data fitting and model complexity (generalizability)



Optimization-based approaches

Objective functions

● Description length (Langley&Stromsten, 2000)
○ Equivalent to posterior probability with the above prior

● Free energy (negative evidence lower bound) (Kurihara&Sato, 2006)



Optimization-based approaches

Start point of local search

1. Union of training sentences  (Stolcke and Omohundro, 1994; Langley&Stromsten, 
2000; Tu&Honavar, 2008)

Ex: S -> John makes tea
S -> John makes coffee
…
S -> John is eating

all the training sentences

➢ Perfect fitting of training data
➢ No generalizability



Optimization-based approaches

Start point of local search

2. Most general grammar  (Chen, 1995; Kurihara&Sato, 2006)

Ex: S -> S X | X
X -> a | b | c | … 

➢ Bad fitting of training data
➢ Can generate any sentence

all the terminals



Optimization-based approaches

Structure-change operations

1. AND (a.k.a. composition, chunk)  (Stolcke and Omohundro, 1994; Chen, 1995; 
Langley&Stromsten, 2000)

Add a new rule: A -> B C

existing symbolsa new symbol

Replace “BC” with A in the right-hand side of other rules
Ex: “X -> B C D” becomes “X -> A D”



Optimization-based approaches

Structure-change operations

2. OR (i.e., alternatives)  (Chen, 1995)

Add a new rule: A -> B | C

existing symbolsa new symbol

Replace B and C with A in the right-hand side of other rules
Ex: “X -> C D” becomes “X -> A D”



Optimization-based approaches

Structure-change operations

3. AND-OR  (Tu&Honavar, 2008)

Add new rules:  A -> O1 O2 …  and 

existing symbols
new symbols

Replace sequences “Bi Cj ...” with A in the right-hand side of other rules
Ex: “X -> B2 C1 ...” becomes “X -> A”

O1 -> B1 | B2 | ...
O2 -> C1 | C2 | ...
...



Optimization-based approaches

Structure-change operations

4. Merging two existing symbols  (Stolcke and Omohundro, 1994; Langley&Stromsten, 
2000; Kurihara&Sato, 2006)

5. Splitting an existing symbol to two and making copies of rules involving the 
symbol  (Kurihara&Sato, 2006)

6. Deleting a rule  (Kurihara&Sato, 2006)



Optimization-based approaches

Reevaluating the objective function after each structure-change operation

● A complete reevaluation is time-consuming
○ Requires re-parsing of all the training sentences

● Simple formulas may exist for computing the change of the objective function 
value
○ Only require computation on local changes
○ May be approximate



Structure Learning - Summary

● Goal: Finding an optimal set of production rules
● Two classes of approaches

○ Heuristic approaches
○ Optimization-based approaches

● Empirical results
○ Poor accuracies on real data, often below simple baselines 😟
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