
Aggregating and Learning
from Multiple Annotators

Silviu Paun, Queen Mary University of London
Edwin Simpson, University of Bristol

EACL 2021

https://sites.google.com/view/alma-tutorial

https://sites.google.com/view/alma-tutorial

Part 1. Motivation and early
approaches to annotation
analysis

Introduction

• Labelling data is one of the most fundamental activities in science

• For many years now progress in Computational Linguistics has been driven by the
creation of larger and richer corpora

• In the early days, the task of annotating these data was carried out by experts

• Increasingly however the amount of data required to train the state of the art has
gone beyond what can be achieved with traditional expert annotation, so the
field has started exploring alternative solutions

• Crowdsourcing in particular has seen huge success

• Microtask crowdsourcing via platforms such as Amazon Mechanical Turk remains
the most prevalent, but citizen science-based efforts and games with a purpose
have also been employed

Example of an annotation task

• Recognizing textual entailment

• Coders are presented with two sentences and asked to judge whether the second

sentence, called a hypothesis, can be inferred from the first

• A positive case of textual entailment:

• Text: “Crude Oil Prices Slump.”

• Hypothesis: “Oil prices drop.”

• A case of false entailment:

• Text: “The government announced last week that it plans to raise oil prices.”

• Hypothesis: “Oil prices drop.”

A summary of the annotation patterns from the Recognizing
Textual Entailment (RTE) dataset (Snow et al., 2008)

Annotation aggregation

• The annotations, once collected, need to be distilled from noise

• The dataset contains a fair amount of disagreement and the labels
proposed by the majority of coders are not always right, at least as judged
a posteriori by a panel of experts

• But the correct labels can be found among the annotations; we just need
better tools than simple heuristics such as majority voting to identify them

• Following a long line of work, spanning across multiple decades, it has
been suggested probabilistic models of annotation can be the right tools
for this assignment

Probabilistic models of annotation

• Simply put, a model of annotation is a probabilistic framework for
distilling the disagreement between coders from noisy interpretations
• We can specify our assumptions about the annotation process, e.g., the

interactions between the items and the coders

• Our assumptions are then considered when inferring the corpus labels

• Most models of annotation share these characteristics:

• The items are assumed to have one correct interpretation, often referred to in
the literature as their true class

• The coders are assumed to have their annotation behaviour dependent on
the true class of the items

The generative process of a (completely) pooled model

• The items (e.g., the pairs of sentences in our recognizing textual entailment
example) are first assigned a true class (the entailment status of a pair of
sentences) based on the prevalence of the true classes in the corpus (the
percentage of sentence pairs with positive and negative entailment):

• Subsequently, the model assumes that each annotation is produced
according to a population-wide annotation behavior associated with the
true class:

𝑦𝑖,𝑛~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝜁𝑐𝑖)

The generative process of a (completely) pooled model

• This simple model does not distinguish between the different abilities
the annotators may have and assumes instead they all follow a
common behavior

• The population-wide behavior is formulated in terms of a confusion
matrix, whose rows are probability distributions governing the
annotation behavior of the coders on items of a certain true class

• In our example the confusion matrix captures the probability of
labelling some pair of sentences as a negative or a positive instance of
entailment when their true status is either positive or negative

A pooled model: parameter estimates

• Fitting the just described model on the RTE dataset results in an estimated
prevalence of (0.55, 0.45) and an overall coder specificity of 0.65 and sensitivity
0.84

• These estimates inform us there is a relatively balanced number of positive and
negative instances in the corpus and that the coders can identify the positive
instances considerably better than the negative ones

• The estimates derived from gold (expert) labels indicate an evenly balanced
prevalence and a specificity of 0.66 and sensitivity 0.80

• The inferred textual entailment status of the sentence pairs matches the gold
labels on 709 out of 800 cases, for an accuracy of about 89%

Moving on: unpooled models

• A limitation of the model presented before is that it assumes that all

coders share the same annotation behaviour, and thus is unable to

capture the accuracy and bias of the individual annotators

• In a seminal work, Dawid and Skene (1979) introduced a model in

which each annotator is characterized by their own confusion matrix

• Now each annotation of an item is assumed to be produced following

the behaviour of its coder on items of that true class:

More unpooled models

• Another widely used unpooled model in NLP is the MACE model (Hovy et al, 2013). This model has a simpler
parameterization of the accuracy and bias of the annotators formulated in terms of an ability parameter and
a spamming behaviour

• When presented with an item, the model assumes the annotator first decides whether or not he knows the
answer:

𝑧𝑖,𝑛~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃𝑗𝑗[𝑖,𝑛])

• Annotators of high ability (𝜃𝑗 close to 1) are more likely to correctly annotate the items; if an annotator

knows the answer (𝑧𝑖,𝑛 = 1) they produce the true class:

𝑦𝑖,𝑛 = 𝑐𝑖

• But when they do not know the answer (𝑧𝑖,𝑛 = 0), the annotators annotate based on their spamming

preference:

𝑦𝑖,𝑛~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝛽𝑗𝑗[𝑖,𝑛]

Coder estimates for the model of Dawid and Skene
(1979) on RTE dataset

Typical coder profiles extracted from the RTE dataset

Example of typical annotators found in a dataset. The gold* confusion is computed by matching the

annotations of a coder against the gold standard; due to the limited number of annotations this

provides only a rough estimate.

Unpooled models: more analysis

• The prevalence of the true classes was estimated to be (0.48, 0.52), a

close estimate to the (0.5, 0.5) prevalence present in the gold

standard

• Both the model of Dawid and Skene (1979) and that of Hovy et al.

(2013) infer the same labels, correctly (according to the gold

standard) adjudicating 743 items, for an accuracy of about 0.93

• The models over-perform a simple majority vote baseline by 3

percentage points

The notion of item difficulty

• The models discussed so far assume that the coders annotate independently given the
true class of the items

• Recognizing that some items are more challenging than others violates the
independence assumption

• Example of an ‘easy’ judgement:

• Text: “The three-day G8 summit will take place in Scotland.”

• Hypothesis: “The G8 summit will last three days.”

• Example of a ‘difficult’ judgement:

• Text: “EU membership is a strategic necessity for Turkey, as Ankara will inevitably suffer greater
foreign policy problems in the future unless it makes it into the Union.”

• Hypothesis: “Turkey to join the EU.”

Item difficulty (Carpenter, 2008)

• Follows previous work in item response theory and ideal point models

• The probability of an annotator being correct on an item is based on a subtractive
relationship between their ability and the difficulty of the item

• For an item whose true class is positive (𝑐𝑖 = 1), the model assumes an
annotation is supplied based on the sensitivity 𝛼𝑗 of the annotator and the

difficulty of the item 𝜃𝑖:

𝑦𝑖,𝑛 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝛼𝑗𝑗 𝑖,𝑛 − 𝜃𝑖

• If the item was assigned a negative class (𝑐𝑖 = 0), the specificity of the annotator
𝛽𝑗 is involved instead:

𝑦𝑖,𝑛 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 1 − 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝛽𝑗𝑗 𝑖,𝑛 − 𝜃𝑖)

Item difficulty (Carpenter, 2008)

• When the difficulty of the item is 0 the model is equivalent to a log

odds reparameterization of the model of Dawid and Skene (1979)

• If the item is easy (𝜃𝑖 < 0) both the sensitivity and the specificity of

the annotator are increased, the annotator having a larger probability

to supply the correct answer

• In case of a hard item (𝜃𝑖 > 0) , the difficulty parameter reduces the

sensitivity and the specificity of the annotator, thus increasing their

chance of being wrong

Item difficulty (Whitehill et al, 2009)

• Under GLAD, the difficulty of the items is in a multiplicative relationship with the ability
of the coders. Unlike the Carpenter (2008) model, here we have a cross class coder
ability parameter, representing their probability of correctly annotating an item.

• The difficulty of an item is modelled with parameter 𝛽𝑖, constrained to the positive side
of a log odds scale. The annotations for an item whose true class is 𝑐𝑖 , have the following
probability of correctness:

• On easy items (0 < 𝛽𝑖
−1 < 1) the annotators’ accuracy is increased, reaching perfect

accuracy as 𝛽𝑖
−1 → 0. On more difficult items (characterized by 𝛽𝑖

−1 > 1) the coders have

a lower probability of correctness, reaching random chance as 𝛽𝑖
−1 → ∞.

Item difficulty: a geometric interpretation

The effects of item difficulty on the ability of an annotator. Green corresponds to easy items, black to

borderline difficulty, and red to hard items.

(a) Subtractive relationship (Carpenter) (b) Multiplicative relationship (Whitehill)

Item difficulty: a practical example using the RTE dataset

The average difficulty estimated by the models of Carpenter (2008) and Whitehill et al. (2009) for

items with a certain amount of disagreement

Looking back for a moment

• We started with a simple model of annotation which assumed all coders have the

same annotation behavior

• That was an example of a completely pooled model

• The models subsequently introduced relaxed the aforementioned assumption

and assigned each annotator with their own ability parameters

• These models are often referred to as unpooled models, i.e., models with individual structures

• Although effective in practice, one downside to having an unpooled model

structure is that it can require a good number of observations to properly fit

some of the parameters, e.g., fitting the accuracy and bias of the annotators

The issue of data sparsity

• In some crowdsourcing environments this requirement of plentiful
observations can be satisfied, e.g., in microtask platforms where you
can control for the number of annotations per annotator and per item

• In more open environments, such as in games with a purpose where
the data collection process relies on player engagement, sparsity
becomes an important factor to be considered

• Sparsity also plays a role in the early days of a crowdsourcing
campaign and, more generally, alleviating its effects can reduce the
time that is necessary to achieve the desired level of annotation
quality and cut down the costs of the project

Hierarchical structures (partial pooling)

• One solution to dealing with sparsity is to extend the models with a hierarchical

structure, also referred to as a partially-pooled structure

• This type of structure improves (regularizes) the estimates of the lower level parameters

using information about the hierarchy

• It does so by pooling the individual estimates towards the mean of the hierarchical prior

• The level of pooling is as strong as evidenced by the data

• As already touched on, in situations of sparsity, the lack of observations is compensated using hierarchical

information through parameter pooling. In a hierarchical model of coder ability the hierarchical prior informs

more strongly the posterior of the lower level annotator estimates.

• When plenty of observations are available the partially pooled and the unpooled models should perform

similarly. In this setting the likelihood of the annotations will dominate over the prior.

Modelling annotator communities

• Typical annotator communities found in a crowdsourcing setup include
spammers, adversarial, biased, average or high quality players

• Knowledge of these communities would allow to regularize the behaviour
of the annotators towards the profile of the community they are part of

• Venanzi et al. (2014) provide such a model. A nonparametric variant is put
forward by Moreno et al. (2015). We briefly introduce below the former.

• Assuming there are 𝐶 communities in the pool of annotators, and
𝜃 encodes their prevalence, the model begins by assigning each coder a
community profile:

𝑧𝑗 ~ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝜃)

Modelling (still) annotator communities

• Annotators have their class behaviour drawn from the community
profile they were assigned to previously:

• The community profiles are parameterized in terms of a location
parameter 𝜁𝑧𝑗,𝑘 encoding the average behaviour of the coders

assigned to them and a covariance parameter Ω𝑧𝑗 ,𝑘 intended to

capture the level of pooling exerted by the community on its
members

Modelling annotator communities: parameter estimates

• Applied to the RTE dataset the community model of Venanzi et al. (2015)
gets an accuracy on par with the unpooled model of Dawid and Skene
(1975)
• It’s when the data is sparse the partially pooled structure shows its true utility. Wait

for the next slide.

• The model inferred two prevalent communities

• “Good annotators”: 88% prevalence and
0.92 0.08
0.13 0.87

profile

• “Coders biased towards negative entailment”: 12% prevalence and
0.37 0.63
0.18 0.82

profile

The accuracy of a community model (Venanzi et al., 2014) and its unpooled
counterpart (Dawid and Skene, 1979) in an adaptive learning setting (RTE dataset)

Part 2. Advanced models of
annotation

Sequence Annotations

• In text annotation schemes such as BIO, the probability of a label
depends on what came before it.

• E.g., ‘Inside’ (I) cannot follow ‘Outside’ (O):

• Ignoring these dependencies can lead to invalid sequences and
disregards indications from preceding labels that annotators may
confuse ’B’ or ‘I’ labels.

O O O B I I I
…the teachers observations. As it was the

I I I O O O O O
same back then, I ruled out a trauma …

Badly-formed Spans: Example
1 2 3 Aggregate

the O O O O

teachers’ O O O O

observations. O O B O

As O B I O

it B I I I

was I I I I

the I I I I

same I I I I

back O I I I

then O I I I

• On the right, we get an invalid
aggregate sequence using a
method like D&S or MACE.

• If we knew that B and I were
related, we could include ‘As’ in
the span.

• Annotator 3 has labelled
‘observations’ as B, so are more
like to label ‘As’ as I.

Condition Random Fields with Multiple
Annotators (CRF-MA)
• CRFs assume the probability of a label depends on the previous label

and the features of the data point.

• Rodrigues et al. (2014) proposed a model for learning CRFs from
multiple annotators that resolves the challenges of sequence labels.

• The model assumes that for each sequence, one annotator is reliable,
and the others label randomly, with annotators weighted by a
performance metric.

CRF prediction for the reliable annotator Random predictions

Condition Random Fields with Multiple
Annotators (CRF-MA)
• Expectation maximization can be used to estimate both the true label

sequence and a CRF model.

• CRF-MA improves on CRF and majority voting on NER with ~5
annotators per document.

• Drawbacks of CRF-MA:
• The annotator model is not able to capture labelling bias (e.g. spamming),

unlike Dawid & Skene’s confusion matrices.

• There is no way to encode prior knowledge on the legality of label transitions.

• As it is based on CRFs, it suffers from slow training and prediction.

Sequential Version of Dawid & Skene?

• Can we handle sequential dependencies and still use any of the
successful Dawid & Skene-based models for crowdsourcing?

• Dawid & Skene assume independent true labels: 𝑐𝑖~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝜋 .

• Replace this with a generative model of sequential dependencies.

N annotators

ci-1 ci ci+1

yi-1,n yi,n yi+1,n

Dawid & Skene + Hidden Markov Models

• Replace 𝑐𝑖~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝜋 by a
hidden Markov model (HMM):

• The HMM’s transition probability
models probability of true label
given its predecessor;

• HMM emission model: probabilities
of features given the true label;

• This is the approach of HMM-crowd
(Nguyen et al., 2017). N annotators

ci-1 ci ci+1

yi-1,n yi,n yi+1,n

xi-1,n xi,n xi+1,n

Dawid & Skene + Other True Label Models

• Generally, 𝑐𝑖~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝜋 can
be replaced with any distribution
that’s appropriate for the data.

• E.g., a text classifier that uses the
features, 𝑥𝑖.

• True label models can be plugged in
to Dawid & Skene…

• …We’ll come back to this later!
N annotators

ci-1 ci ci+1

yi-1,n yi,n
yi+1,n

xi-1,n xi,n xi+1,n

Sequential Confusion Matrices

• Annotators’ labels also depend
on what came before – they
cannot break BIO labelling rules.

• E.g., if annotator misses the first
token in a span, they’re more
likely to label the next one as ‘B’
when true label is ‘I’.

• Some tend to miss starts and
ends of spans or split spans. N annotators

ci-1 ci ci+1

yi-1,n yi,n yi+1,n

xi-1,n xi,n xi+1,n

Sequential Confusion Matrices

• Simpson & Gurevych (2019)
allow the confusion matrix 𝜻 to
depend on the previous label,
𝑦𝑖−1,𝑛 .

• In effect, the confusion matrices
are unpooled further so there
are separate matrices 𝜻 for each
possible value of 𝑦𝑖−1,𝑛.

N annotators

ci-1 ci ci+1

yi-1,n yi,n yi+1,n

xi-1,n xi,n xi+1,n

Bayesian Sequence Combination (BSC)

• Simpson & Gurevych (2019) also set priors over the transition matrix
to prevent the model from predicting any illegal transitions.

• E.g., for BIO-encoding, set the prior hyperparameter for transitions
from ‘O’ (outside) to ‘I’ (inside) labels close to zero: 𝛼𝑛,𝑂,𝐼 = 1𝑒−6

• Variational Bayesian inference: compared to maximum likelihood or
maximum a posteriori methods, approximate Bayesian inference
reduces the influence of annotators who provide fewer labels, as their
confusion matrix is known with less confidence.

Benefits of BSC (Simpson & Gurevych 2019)
6

5
.4

6
4

.3

3
4

.8

7
0

3
9

3
2

7
4

.4

6
8

.9

4
6

.4

7
5

.8

6
8

.2

5
6

.8

7
7

.4

7
2

.8

6
0

.1

6
2

.5

NAMED ENTITY RECOGNITION
(CONLL 2003)

MENTIONS OF MEDICAL TRIAL
POPULATIONS, PICO

ARGUMENT SPAN
IDENTIFICATION

Majority vote MACE

IBCC (Dawid & Skene with variational Bayes) BSC: Dawid & Skene + HMM

BSC: sequential confusion matrices + HMM CRF-MA (result from Nguyen et al., 2017)

Sequential Confusion Matrices

Workers
clustered
according to 𝜻.

Plots show
differences
between 𝜻
depending on
previous label
from the PICO
dataset.

Modelling anaphoric annotations

• The task of identifying and resolving anaphoric reference to discourse entities is known
in NLP as coreference resolution

• In standard annotation schemes for anaphora/coreference the annotators may mark a
mention as discourse new if it introduces a new entity into the discourse or as discourse
old if it refers to an already introduced entity

• In the latter case the annotators also have to specify the entity in question

• One way to do that is to link the mentions with their most recent antecedents

• The entities can then be determined by following the link path indicated by the most recent
antecedent of each mention

• Richer annotation schemes allow annotators to also mark, e.g., expletives and
predicative noun phrases

Let’s look at an example

“John, a colleague from work, said it will rain later today. He was right.”

• The annotators should mark:

• “John” as discourse new

• “a colleague from work” as a predicative noun phrase

• “it” as an expletive

• and the pronoun “he" as a discourse old mention further selecting “John” as
the most recent antecedent that refers to the same entity

• Mentions “John” and “he” are said to form a coreference chain

The anaphoric annotation task

• Apparently, this is a classification task

• But unlike standard classification tasks, the set of classes the
annotators can choose from changes depending on the mentions they
annotate

• For this reason, standard models of annotation are not immediately
applicable to aggregate anaphoric judgements

• Paun et al. (2018b) addressed this gap with their mention pair model
of annotation (MPA)

Introducing the MPA model

• MPA assumes a pre-processing step where the annotations of each mention are
transformed into binary agreement decisions w.r.t. each distinct collected
interpretation

• For example, for the pronoun “he” in our example, let us assume we collect 3
judgements
• Say 2 annotators provide the correct answer, i.e., a discourse old interpretation with “John”

as the most recent antecedent of the entity

• And the 3rd one, a spammer, chooses the discourse new interpretation

• The collected judgements are processed as follows:

• Interpretation DO(“John”) belonging to the DO class with annotations 1, 1, 0

• Interpretation DN() belonging to the DN class with annotations 0, 0, 1

The generative process of MPA

• For every mention and distinct interpretation, the model first decides whether
the mention pair is a true mention pair or not:

𝑐𝑖,𝑚 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝑧𝑖,𝑚)

• If the mention pair is believed to be correct (𝑐𝑖,𝑚 = 1), then the associated binary

decisions are assumed to be the result of the annotators’ class sensitivity:

𝑦𝑖,𝑚,𝑛 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝛼𝑗𝑗[𝑖,𝑚,𝑛],𝑧𝑖,𝑚)

• When the mention pair is considered incorrect (𝑐𝑖,𝑚 = 0) the binary decisions are

modelled according to the class specificity of the coders:

𝑦𝑖,𝑚,𝑛 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝛽𝑗𝑗[𝑖,𝑚,𝑛],𝑧𝑖,𝑚)

Some final comments on MPA

• The annotators have a sensitivity and a specificity associated with each class
• This allows to capture, e.g., that discourse old interpretations are generally harder compared

to discourse new ones

• After the parameters have been estimated each mention is assigned the most
likely interpretation based on the posterior of the mention pair indicators

• The coreference chains (entities) can then be built by simply following the link
path from the adjudicated mention pairs

• The model can also be used in an analysis of anaphoric ambiguity

• Identify those mentions with no or more than one likely interpretation

How well does MPA do

• We used MPA to adjudicate the anaphoric interpretations collected

over many years by the Phrase Detectives game with a purpose

• The latest version of the released corpus (Poesio et al., 2019)

contains at least 8 anaphoric judgements for over 100 thousand

mentions from about 540 documents covering 2 main genres,

Wikipedia articles and fiction from the Gutenberg collection

• 45 of those documents, containing over 6 thousand mentions, were

annotated by linguists to provide a reliable gold standard for

evaluation

Evaluating mention pairs

The quality of the aggregated mention pairs evaluated against a gold standard built by linguists

Evaluating coreference chains

The quality of the coreference chains inferred using different methods evaluated using standard

coreference metrics against expert-annotated chains. MV stands for chains determined from mention

pairs inferred using majority voting, MPA for chains inferred from MPA-deduced mention pairs, and

Stanford for chains produced by the (Lee et al., 2011) deterministic coreference system

Ambiguous and Continuous Labelling Tasks

• Motivating tasks:
• How good is translation A?

• How complete is summary B?

• How funny is joke C?

• How metaphorical is metaphor D?

• How convincing is argument E?

• Let’s consider rating two
example arguments:

• Score out of ten? Likert scale?

Who said anything about FF/mozilla
having anything to do with steve
jobs/apple? Seperate enititys, not in the
least bit attached! BTW, IE blows when
making pages and …

Firefox takes the best of all previous
browsers and sticks it all in one neat

package. Security and extendibility are
some of its top features. And those

times when …

Comparisons and Preferences

• Disadvantages of numerical ratings:
• Discrete categories such as star ratings do not provide fine-grained differentiation.
• Annotators label inconsistently over time as they adjust to what they have seen.
• Calibration: annotators interpret scores differently, e.g., some people consistently

give extreme scores, others choose middling values.
• Inconsistencies may be worse for continuous ratings.

• With comparative labelling, annotators select preferred and dis-preferred
items from pairs or lists:
• Allows for total sorting of items, i.e., fine-grained rankings.
• Reduces inconsistencies over time and between annotators since annotators do not

have to select a rating value.
• Ranking requires more labels but annotators can often label preferences more

quickly.

✓

From Pairwise Labels to Rank Scores

• There are two popular pooled models that relate pairwise labels to the
utility of the items, a score that can be used for ranking.

• Bradley-Terry Model:

• Thurstone-Mosteller Model:

• Where Φ is the probit or cumulative distribution function of the standard
normal distribution and s is the annotation noise variance.

Best-Worst Scaling

• Annotators choose the best and worst items from a list (see Flynn and
Marley, 2014).

• A simple scoring method approximates a maximum likelihood estimate of
the BT model ranking:
• s𝑐𝑜𝑟𝑒 𝑎 = 𝑐𝑜𝑢𝑛𝑡 𝑎 𝑤𝑖𝑛𝑠 − 𝑐𝑜𝑢𝑛𝑡(𝑎 𝑖𝑠 𝑤𝑜𝑟𝑠𝑡)

• Danger: with a small number of comparisons, many items will have the same score
even if they were compared with each other.

• Reformulate as pairwise comparisons to apply other pairwise models;
• One pair for best item vs. each of the other items;

• One pair for worst item vs. each of the other items;

• Assumes that the sequence of choices is either best-then-worst or worst-then-best.

✓ ✕

Sparsity of Pairwise Labels

• With exhaustive labelling, the number of pairs is 𝒪(𝑛2) , where 𝑛 is
the number of data points.

• In practice, 𝒪(𝑛) comparisons give good results.

• Using item features mitigates label sparsity: we can think of utility as
a function of an item’s features, e.g., of a document embedding.

Gaussian Process Preference Learning (GPPL)

• Gaussian processes (GPs) are particularly well suited to modelling
utility functions when learning from sparse, noisy pairwise labels.

• The Bayesian approach provides a posterior distribution over utilities
which represents model confidence through variance.

𝑝 𝑓𝑏 = 𝑁(෡𝑓𝑏 , 𝑣𝑏)

𝑥𝑏

Lots of training data

Sparse training data

(f
)

Gaussian Process Preference Learning (GPPL)

• We can think of inference as like updating the distribution for each
label in the dataset in turn:

• Hence, GPs avoid making overly strong predictions where there is
limited evidence, i.e., for items with few comparisons or noisy labels.

Pairwise
observation:

𝑎 ≻ 𝑐

𝑥𝑎 𝑥𝑐
(f

)

Preference Learning Comparison

• Task: ranking arguments by
convincingness.

• 1 crowdsourced label per pair.

• SVM and BiLSTM trained to classify
pairs of arguments.

• SVM and BiLSTM trained separately to
predict rank scores.

• Right: predictive performance for
unseen topics shows the benefit of
Thurstone-Mosteller model + GPs.

0

20

40

60

80

100

Pairwise accuracy Spearman

Simpson & Gurevych (2018)
UKPConvArgCrowdSample

SVM BiLSTM GPPL

Pairwise Labelling Strategies

• Two strategies for mitigating annotation
errors when allocating pairs to annotators
(Simpson et al., 2019):

a) Redundant labelling: each pair labelled by M
annotators.

b) Maximal coverage: annotators label different
pairs to maximise the number of different
comparisons in the dataset.

• Active learning: uncertainty sampling can be
very effective by leveraging the GP posterior
variance (Simpson & Gurevych, 2018):

A Partially Pooled Model for Preferences

• Unpooled models capture accuracy and bias of annotators – how can
we do this for preferences?

• Assume that an individual’s utility function is offset from the ‘true’, or
rather, consensus, utility function:

• The offset, 𝑣𝑗(𝒙𝑎) represents the user j’s bias and is a function of the
item’s features, 𝒙𝑎 .

• This formulation is possible because the ground truth is a numerical
value and observations are also (derived from) numerical values

consensus rating

user offset

personal

rating

A Partially Pooled Model for Preferences

• Both t and 𝑣𝑗 can be modelled by Gaussian process.

• However, we rarely have enough labels per annotator to learn 𝑣𝑗 with
confidence across the feature space.

• So again, we can use a hierarchical method, where similar users are
clustered:

Cluster of user j

A Partially Pooled Model for Preferences

• User preferences may be more complicated than annotation
behaviour for class labels: users may share similar preferences for
subsets of items only.

• Following recommender systems, crowdGPPL (Simpson & Gurevych,
2020) uses matrix factorisation to identify latent factors common to
multiple annotators:

User j’s weight for latent factor c

Offset for latent factor c

Preference Learning Comparison

• Task: ranking arguments by
convincingness.

• 1 crowdsourced label per pair.

• Right: predictive performance for
unseen topics (predicting the
consensus, t)

• More subjective or ambiguous tasks
may benefit more from a partially
pooled model like CrowdGPPL.

0

20

40

60

80

100

Pairwise accuracy Kendall's tau

Simpson & Gurevych (2020)
UKPConvArgCrowdSample

SVM BiLSTM GPPL Column2

Aggregation with variational autoencoders

• Probabilistic models of the type we discussed allow us to encode our
assumptions about the annotation process, but these assumptions
have to be explicitly specified
• Manually coming up with good specifications can be both cumbersome and

limiting

• The alternative proposed by Yin et al. (2017) is to approach the task
of aggregating the annotations with a variational auto-encoder
• This framework allows them to use neural networks to learn more complex,

non-linear relationships between the annotations and the ground truth

Aggregation with variational autoencoders

• The generative process of the annotations for an item follows a familiar set of
assumptions:

• First draw the true class 𝑐𝑖 from a prior distribution 𝑝𝜃(𝑐𝑖)

• Then condition on the true class generate the annotations 𝑝𝜃(𝑦𝑖 |𝑐𝑖)

• The objective is to find the parameters that maximize 𝑝𝜃(𝑦1:𝐼), the marginal likelihood

• Yin et al. (2017) follow (Kingma and Welling, 2013) and introduce a variational
approximation to the posterior of the true classes; let 𝑞𝜑(𝑐𝑖|𝑦𝑖) be this approximation,

the marginal can be decomposed as follows:

Variational autoencoders

• It can be observed that by maximizing the marginal likelihood (the
evidence) we are implicitly minimizing the KL divergence of the
approximation from the true posterior of the true classes

• From a coding theory perspective 𝑞𝜑(𝑐𝑖|𝑦𝑖) can be seen as a probabilistic

encoder
• Given the annotations of an item it produces a probability distribution for its true

class

• Similarly, 𝑝𝜃(𝑦𝑖|𝑐𝑖) can be interpreted as a probabilistic decoder
• Given the true class of an item it species a distribution responsible for generating the

annotations

Variational autoencoders

• The second term from the marginal decomposition lower bounds the
evidence. Therefore, we can use this instead as our objective function to
maximize:

• Following the auto-encoder parlance, the first term in the bound above
measures the expected reconstruction error

• The KL term can be interpreted as a regularizer for the parameters of the
encoder, encouraging the approximate posterior for the true class of the
items to be close to the prior

Back to aggregation

• The annotations collected for an item are arranged into a vector representation

• The vector contains 𝐽 blocks, one for each coder, of 𝐾 (the number of classes)
elements corresponding to their one hot encoded annotation (or of zeros only
when a coder did not annotate the item)

• Let us look at an example where we source 4 coders to assign an item into one of
3 classes; assuming coders 1, 3, and 4 assign the item into categories 1, 2, and 1
respectively, and coder 2 does not provide a response, we have:

The encoder part

• We can now introduce the functional form of the encoder and the
decoder

• Starting with the former, Yin et al. (2017) propose to use a neural
network with one fully connected layer

• The output of the network specifies the encoder distribution for the
true class of an item:

𝑞(𝑐𝑖 |𝑦𝑖) = 𝜋𝑖,𝑐𝑖

The decoder part

• The decoder consist of another neural network and learns to reconstruct the

annotations collected for an item from its (one hot encoded) true class

• As before, this network also has a single fully connected layer:

• The vector of reconstructed annotations 𝛽𝑖,𝑐𝑖 has the same structure as the input

vector, i.e., 𝐽 blocks of 𝐾 elements corresponding to a (reconstructed) one hot

encoded annotation for each coder

*The softmax operator above is applied to each successive 𝐾-sized block of logits

A closer look at the decoder

• The matrix of weights 𝑊𝑝 is responsible for learning the annotation behaviour of the
coders for items of different classes

• The matrix consists of 𝐽 successive blocks, one for each coder, of 𝐾 × 𝐾 class confusion
matrices:

• According to the decoder, the probability for a coder 𝑗 to annotate an item 𝑖 whose true
class is 𝑐𝑖 with some class 𝑘 is:

𝑝 𝑦𝑖
𝑗,𝑘

= 1 𝛽𝑖 ,𝑐𝑖 = 𝛽𝑖 ,𝑐𝑖
(𝑗,𝑘)

Now back to the objective function

• ℒ 𝜃, 𝜑 𝑦𝑖 = 𝐸𝑞𝜑(𝑐𝑖|𝑦𝑖) 𝑙𝑜𝑔 𝑝𝜃(𝑦𝑖|𝑐𝑖) − 𝐷𝐾𝐿 𝑞𝜑(𝑐𝑖|𝑦𝑖)|| 𝑝𝜃(𝑐𝑖)

• The expected reconstruction error is approximated via sampling (Kingma and Welling,
2013)

• The practice is that at each training step you first sample a true class from the
distribution described by the encoder:

𝑐𝑖~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝜋𝑖)

• And then use that sample to evaluate the reconstruction term, which turns out to be the
negative cross entropy of the reconstructed annotations relative to the actual input:

Wrapping up the objective function

• ℒ 𝜃, 𝜑 𝑦𝑖 = 𝐸𝑞𝜑(𝑐𝑖|𝑦𝑖) 𝑙𝑜𝑔 𝑝𝜃(𝑦𝑖|𝑐𝑖) − 𝐷𝐾𝐿 𝑞𝜑(𝑐𝑖|𝑦𝑖)|| 𝑝𝜃(𝑐𝑖)

• In the KL term, the prior for the true class of the items is set by Yin et
al. (2017) to be the distribution over the labels provided by the
coders

• Additional regularization of the encoder and decoder weights can be
considered to reduce the influence of those coders which labelled
only a few items

Part 3. Learning with multiple
annotators

Learning with human uncertainty

• The standard for training classifiers is to learn from examples labelled with the
category they most likely belong to

• In doing so however any uncertainty the labellers had in their classification is
ignored

• Peterson et al. (2019) suggest to collect a large number of reliable interpretations
and to use the resulted distribution as a proxy for this uncertainty

• Such distributions offer a richer source of information compared to adjudicated
labels – they indicate:
• The strength of the consensus emerging from the annotations

• The presence of ambiguity

• And also how humans make mistakes

Training with ‘soft’ labels

• The training regime is straightforward, all that is required is to add a
softmax output layer to your existing neural architecture

• The prediction for a training example is:

𝑝𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊ℎ𝑖

• The loss for a training example measures the cross entropy of the
prediction distribution relative to the target distribution over the
annotations:

Experiments: collecting the data

• Peterson et al. (2019) collected slightly above 500 thousand
annotations for the test set of the popular CIFAR10 image
classification corpus (Krizhevsky, 2009), for an average of about 50
annotations per image

• The distributions over the categories that result from the collected
annotations offer a good representation of the coders’ dissent

• Their mode (the majority vote) is on the gold (expert adjudicated)
class in more than 99% of the cases

A hard and soft evaluation

• The authors train in a 10-fold cross validation setting 8 well known CNN based

architectures for image classification using as target distributions either one hot

encoded gold labels or the collected human labels

• A standard accuracy based evaluation shows an average 1% increase in performance when

using the human labels (83.5% vs. 84.5%)

• The collected labels have the quality to also be used to evaluate the models

• Using a cross entropy based evaluation the models trained on the human labels register on

average 29% lower values compared to those trained on one hot labels (0.5 vs. 0.7)

• More significant gains in performance are obtained by using human labels when the

evaluation is conducted on out of sample data, a result that highlights the benefits this

approach to training brings to the generalization capability of the models

Humans are noisy

• The success of the approach presented previously relies on the
quality of the target distributions, i.e., whether the collected
annotations offer a good representation of the coders’ dissent

• That may not always be the case, e.g., when their number is too low
to get a good proxy for the human uncertainty, or when noise
intervenes and skews the distributions

• For this purpose the ability to capture the accuracy and adjust for the
bias of the coders while learning becomes essential

Aggregating the labels while training

• Learning how to distil the labels from noise is not only essential for
training accurate models but also for adjudicating different
interpretations

• The distilled labels leverage not only the annotation patterns
produced by the coders as typically is the case in probabilistic models
of annotation, but also the knowledge of the task accumulated by the
model

• Jointly aggregating the labels and training a classier leads to an
improvement (over the disjoint approach) both in the performance of
the classier and in the quality of the adjudicated labels

Deep learning from crowds

• Rodrigues and Pereira (2018) proposed an approach which integrates
the aggregation of the labels into the architecture of a neural network

• Simply put, the approach involves learning a mapping from the
output of a neural network to the labels provided by the coders

• The mapping is intended to capture and adjust for the accuracy and
bias of the coders

• The prediction distribution for an annotator on some training
example is a function of the network’s output layer:

Classification mappings

• Different functions are put forward to model the classification behaviour of

the coders

• 𝑓𝑗 ℎ𝑖 = 𝑊𝑗ℎ𝑖 using a per coder (confusion) matrix of weights

• 𝑓𝑗 ℎ𝑖 = 𝑤𝑗 ⊙ ℎ𝑖 a per coder vector of class weights

• 𝑓𝑗 ℎ𝑖 = 𝑏𝑗 + ℎ𝑖 a per coder vector of class biases

• The loss for a training example accumulates the loss coming from each of

its annotations

• The loss for an annotation is the cross entropy of the predicted label

distribution relative to a one hot encoding of the actual label

Regression mappings

• When the labels are continuous such as in regression tasks the
following mappings are considered:

• 𝑓𝑗 ℎ𝑖 = 𝑠𝑗ℎ𝑖 using a per coder scale

• 𝑓𝑗 ℎ𝑖 = 𝑏𝑗 + ℎ𝑖 a per coder bias

• 𝑓𝑗 ℎ𝑖 = 𝑠𝑗ℎ𝑖 + 𝑏𝑗 a per coder scale and bias

• In this case the cross entropy loss is replaced by a mean squared error
loss

Evaluation: classifying images

Method Accuracy

Training on the labels chosen by the majority of coders 76.74

Training on labels aggregated with (Dawid and Skene, 1979) 80.79

(Rodrigues and Pereira, 2018) with per coder class weights 81.05

(Rodrigues and Pereira, 2018) with per coder class weights and biases 81.89

(Rodrigues and Pereira, 2018) with per coder matrix of weights 83.15

Training on gold labels 90.63

Evaluation: predicting movie ratings

Method RMSE MAE

Training on the mean ratings 1.50 1.22

(Rodrigues and Pereira, 2018) with per coder scale 1.51 1.23

(Rodrigues and Pereira, 2018) with per coder bias 1.41 1.13

(Rodrigues and Pereira, 2018) with per coder matrix of weights 1.44 1.16

Training on gold ratings 1.33 1.05

Modelling common confusions

• Chu et al. (2021) argue that although coders have their own accuracy
and biases when they annotate, they also share common confusions

(a) LabelMe (b) Music

The general idea

• The annotations are assumed to be the result of either a pooled behaviour

or the coders’ own annotation behaviour

• Both the pooled and the individual annotation behaviours are modelled as

usual, with a ‘confusion’ matrix of weights

• The decision on which annotation behaviour to use when predicting the

annotations is made by a separate classifier on a coder and item basis

based on their features

The framework, introduced more formally

• Let’s start by embedding the coders:

𝑢𝑗 = 𝑓𝑢 𝑒𝑗

• Learn an embedding also for the items, based on their features:

𝑣𝑖 = 𝑓𝑣 𝑥𝑖

• Decide, for each annotation, based on the coder and item embeddings, which model of
behaviour to use:

𝑤𝑖 ,𝑗 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑢𝑗
𝑇𝑣𝑖)

• Predict the annotation using either the coder’s own behaviour 𝑓𝑗, or the pooled

annotation behaviour 𝑓𝑔:

𝑝𝑖 ,𝑗 = 𝑤𝑖 ,𝑗 ∗ 𝑓𝑗 ℎ𝑖 + 1 − 𝑤𝑖 ,𝑗 ∗ 𝑓𝑔(ℎ𝑖)

Final details and results

• An optimizer minimizes the cross-entropy loss between the predicted and the observed
annotations

• To encourage the pooled and the individual annotation behaviour of the coders to be
different, the l2-norm on the difference between their weights is added to the loss

• The results indicate significant differences in accuracy, in particular on those classes
commonly mistaken by the coders:

Model LabelMe Music

Training on the labels chosen by the majority of coders 79.83 72.53

(Rodrigues and Pereira, 2018) with per coder scale and bias 83.27 81.46

(Chu et al., 2021) 87.12 84.06

Part 4. Practical Session

Getting more acquainted with these models

• Hands-on with two of the core models presented here.
• PyIBCC: a Python implementation of the variational Bayes version of Dawid

& Skene's (1979) model.
• CrowdLayer:

• An additional layer that can be placed on top of a standard neural network to train
the model directly from crowdsourced labels.

• Written by Rodrigues and Pereira (2018) using Keras.

• Demonstrate how to:
• Put your data in the right format and apply PyIBCC to obtain adjudicated labels.
• Build and train a neural network with a crowd layer.
• Adjust important hyperparameters of the methods.

• Link to the exercises: https://sites.google.com/view/alma-tutorial

https://sites.google.com/view/alma-tutorial

A book is coming out soon on these topics, and more

• Silviu Paun, Ron Artstein, Massimo Poesio. “Statistical Methods for
Annotation Analysis”. Synthesis Lectures on Human Language
Technologies (morganclaypool.com)

https://www.morganclaypool.com/toc/hlt/1/1

References

• Nguyen, A. T., Wallace, B. C., Li, J. J., Nenkova, A. & Lease, M. Aggregating
and predicting sequence labels from crowd annotations. ACL 2017.

• Simpson, E. & Gurevych, I. A Bayesian Approach for Sequence Tagging with
Crowds. EMNLP 2019.

• Rodrigues, F., Pereira, F., & Ribeiro, B. Sequence labeling with multiple
annotators. Machine learning, 2014.

• Flynn, T. N., & Marley, A. A. Best-worst scaling: theory and methods.
Handbook of choice modelling, 2014.

• Simpson, E., & Gurevych, I. Scalable Bayesian preference learning for
crowds. Machine Learning, 2020.

http://dx.doi.org/10.18653/v1/P17-1028
https://www.aclweb.org/anthology/D19-1101.pdf
https://link.springer.com/content/pdf/10.1007/s10994-013-5411-2.pdf
http://unisa.edu.au/SysSiteAssets/episerver-6-files/global/business/centres/i4c/docs/papers/wp12-002.pdf
https://link.springer.com/content/pdf/10.1007/s10994-019-05867-2.pdf

References

• Bob Carpenter. Multilevel Bayesian models of categorical data annotation.

Unpublished manuscript, 2008.

• Alexander Philip Dawid and Allan M. Skene. Maximum likelihood estimation of

observer error-rates using the EM algorithm. Applied Statistics, 1979.

• Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani, and Eduard Hovy. Learning

whom to trust with MACE. NAACL, 2013.

• Silviu Paun, Jon Chamberlain, Udo Kruschwitz, Juntao Yu, and Massimo Poesio. A

probabilistic annotation model for crowdsourcing coreference. EMNLP 2018.

• Filipe Rodrigues and Francisco C Pereira. Deep learning from crowds. AAAI 2018.

References

• Joshua C. Peterson, Ruairidh M. Battleday, Thomas L. Griths, and Olga Russakovsky.
Human uncertainty makes classification more robust. ICCV 2019.

• Rion Snow, Brendan O’Connor, Daniel Jurafsky, and Andrew Y. Ng. Cheap and fast - but is
it good? Evaluating non-expert annotations for natural language tasks. EMNLP 2008.

• Matteo Venanzi, John Guiver, Gabriella Kazai, Pushmeet Kohli, and Milad Shokouhi.
Community-based bayesian aggregation models for crowdsourcing. WWW 2014.

• Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier R. Movellan, and Paul L. Ruvolo.
Whose vote should count more: Optimal integration of labels from labelers of unknown
expertise. NIPS 2009.

• Li’ang Yin, Jianhua Han, Weinan Zhang, and Yong Yu. Aggregating crowd wisdoms with
label-aware autoencoders. IJCAI 2017.

References

• Pablo G. Moreno, Antonio Artés-Rodríguez, Yee Whye Teh, and Fernando
Perez-Cruz. Bayesian nonparametric crowdsourcing. JMLR, 2015.

• Massimo Poesio, Jon Chamberlain, Silviu Paun, Juntao Yu, Alexandra Uma,
and Udo Kruschwitz. A crowdsourced corpus of multiple judgments and
disagreement on anaphoric interpretation. NAACL 2019.

• Heeyoung Lee, Yves Peirsman, Angel Chang, Nathanael Chambers, Mihai
Surdeanu, and Dan Jurafsky. Stanford’s multi-pass sieve coreference
resolution system at the CoNLL-2011 shared task. CONLL Shared Task, 2011.

• Chu, Zhendong, Jing Ma, and Hongning Wang. Learning from Crowds by
Modeling Common Confusions. AAAI 2021.

